Results of Proficiency Test Vinyl Acetate Monomer (VAM) February 2021

Organized by: Institute for Interlaboratory Studies

Spijkenisse, the Netherlands

Author: Mrs. E.R. Montenij-Bos

Correctors: ing. A.S. Noordman-de Neef & ing. R.J. Starink

Report: iis21C01

April 2021

CONTENTS

1	INTRODUCTION	3
2	SET UP	3
2.1	QUALITY SYSTEM	3
2.2	PROTOCOL	3
2.3	CONFIDENTIALITY STATEMENT	3
2.4	SAMPLES	4
2.5	STABILITY OF THE SAMPLES	4
2.6	ANALYZES	5
3	RESULTS	5
3.1	STATISTICS	5
3.2	GRAPHICS	6
3.3	Z-SCORES	7
4	EVALUATION	7
4.1	EVALUATION PER TEST	8
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	9
4.3	EVALUATION OF THE PROFICIENCY TEST OF FEBRUARY 2021 WITH PREVIOUS PTS	10

Appendices:

1.	Data, statistical and graphic results	12
2.	Number of participants per country	25
3	Abbreviations and literature	26

1 Introduction

Since 2007 the Institute for Interlaboratory Studies (iis) organizes a proficiency scheme for the analysis of Vinyl Acetate Monomer (VAM) in accordance with the latest version of the specification ASTM D2190 every year. During the annual proficiency testing program 2020/2021 it was decided to continue the round robin for the analysis of Vinyl Acetate Monomer (VAM).

In this interlaboratory study 22 laboratories in 17 different countries registered for participation. See appendix 2 for the number of participants per country. In this report the results of the Vinyl Acetate Monomer (VAM) proficiency test are presented and discussed. This report is also electronically available through the iis website www.iisnl.com.

2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organizer of this proficiency test (PT). Sample analyzes for fit-for-use and homogeneity testing were subcontracted to an ISO/IEC17025 accredited laboratory. It was decided to send one sample of 0.5 liter Vinyl Acetate Monomer (VAM) labelled #21001. The participants were requested to report rounded and unrounded test results. The unrounded test results were preferably used for statistical evaluation.

2.1 QUALITY SYSTEM

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, has implemented a quality system based on ISO/IEC17043:2010. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on a regular basis by sending out questionnaires.

2.2 PROTOCOL

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5). This protocol is electronically available through the iis website www.iisnl.com, from the FAQ page.

2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

2.4 SAMPLES

A batch of approximately 25 liters of Vinyl Acetate Monomer (VAM) was obtained from a participating laboratory. After homogenization 48 amber glass bottles of 0.5 liter were filled and labelled #21001.

The homogeneity of the subsamples was checked by determination of Density at 20°C in accordance with ASTM D4052 on 8 stratified randomly selected subsamples.

	Density at 20°C in kg/L
sample #21001-1	0.93216
sample #21001-2	0.93216
sample #21001-3	0.93216
sample #21001-4	0.93215
sample #21001-5	0.93215
sample #21001-6	0.93215
sample #21001-7	0.93215
sample #21001-8	0.93216

Table 1: homogeneity test results of subsamples #21001

From the above test results the repeatability was calculated and compared with 0.3 times the reproducibility of the reference test method in agreement with the procedure of ISO13528, Annex B2 in the next table.

	Density at 20°C in kg/L
r (observed)	0.00001
reference test method	ISO12185:96
0.3 x R (reference test method)	0.00015

Table 2: evaluation of the repeatability of subsamples #21001

The calculated repeatability was in agreement with 0.3 times the reproducibility of the reference test method. Therefore, homogeneity of the subsamples was assumed.

To each of the participating laboratories one bottle of 0.5 liter Vinyl Acetate Monomer (VAM) labelled #21001 was sent on January 13, 2021. An SDS was added to the sample package.

2.5 STABILITY OF THE SAMPLES

The stability of Vinyl Acetate Monomer (VAM) packed in amber glass bottles was checked. The material was found sufficiently stable for the period of the proficiency test.

2.6 ANALYZES

The participants were requested to determine: Acidity without Nitrogen purge, Apparent Specific Gravity 20/20°C, Color Pt/Co, Density at 20°C, Distillation (IBP, 50% recovered, Dry Point, Distillation Range), Inhibitor as Hydroquinone, Purity by GC and Impurities (Acetaldehyde, Acetone, Ethyl Acetate, Methyl Acetate) and Water.

It was explicitly requested to treat the sample as if it was a routine sample and to report the test results using the indicated units on the report form and not to round the test results, but report as much significant figures as possible. It was also requested not to report 'less than' test results, which are above the detection limit, because such test results cannot be used for meaningful statistical evaluations.

To get comparable test results a detailed report form and a letter of instructions are prepared. On the report form the reporting units are given as well as the reference test methods (when applicable) that will be used during the evaluation. The detailed report form and the letter of instructions are both made available on the data entry portal www.kpmd.co.uk/sgs-iis/. The participating laboratories are also requested to confirm the sample receipt on this data entry portal. The letter of instructions can also be downloaded from the iis website www.iisnl.com.

3 RESULTS

During five weeks after sample dispatch, the test results of the individual laboratories were gathered via the data entry portal www.kpmd.co.uk/sgs-iis/. The reported test results are tabulated per determination in appendix 1 of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder was sent to those laboratories that had not reported test results at that moment. Shortly after the deadline, the available test results were screened for suspect data. A test result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the reported test results (no reanalysis). Additional or corrected test results are used for data analysis and the original test results are placed under 'Remarks' in the test result tables in appendix 1. Test results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks.

3.1 STATISTICS

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5).

For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded test results. Test results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test, a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. If a data set does not have a normal distribution, the (results of the) statistical evaluation should be used with due care.

The assigned value is determined by consensus based on the test results of the group of participants after rejection of the statistical outliers and/or suspect data.

According to ISO 13528 all (original received or corrected) results per determination were submitted to outlier tests. In the iis procedure for proficiency tests, outliers are detected prior to calculation of the mean, standard deviation and reproducibility. For small data sets, Dixon (up to 20 test results) or Grubbs (up to 40 test results) outlier test can be used. For larger data sets (above 20 test results) Rosner's outlier test can be used. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by F(0.01) for the Rosner's test. Stragglers are marked by F(0.01) for the Dixon's test, by F(0.01) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. In this PT, the criterion of ISO13528, paragraph 9.2.1. was met for all evaluated tests, therefore, the uncertainty of all assigned values may be negligible and need not be included in the PT report.

Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

3.2 GRAPHICS

In order to visualize the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported test results are plotted. The corresponding laboratory numbers are on the X-axis. The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected reference test method. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also, a normal Gauss curve (dotted line) was projected over the Kernel Density Graph (smooth line) for reference. The Gauss curve is calculated from the consensus value and the corresponding standard deviation.

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements, e.g. ASTM or ISO reproducibilities, the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the variation of this interlaboratory study.

The target standard deviation was calculated from the literature reproducibility by division with 2.8. In case no literature reproducibility was available, other target values were used, like Horwitz

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate whether the reported test result is fit-for-use.

The z-scores were calculated according to:

```
z(target) = (test result - average of PT) / target standard deviation
```

The z(target) scores are listed in the test result tables in appendix 1.

Absolute values for z<2 are very common and absolute values for z>3 are very rare. The usual interpretation of z-scores is as follows:

```
|z| < 1 good
1 < |z| < 2 satisfactory
2 < |z| < 3 questionable
3 < |z| unsatisfactory
```

4 **EVALUATION**

Some problems were encountered with the dispatch of the samples due to COVID-19 pandemic. Therefore, the reporting time on the data entry portal was extended with one week. Two participants did not report any test results at all and two participants reported test results after the extended final reporting date. Not all participants were able to report test results for all tests requested.

In total 20 participants reported 225 numerical test results. Observed were 11 outlying test results, which is 4.9%. In proficiency studies, outlier percentages of 3% - 7.5% are quite normal.

Not all data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care, see also paragraph 3.1.

4.1 EVALUATION PER TEST

In this section the reported test results are discussed per test. The test methods which were used by the various laboratories were taken into account for explaining the observed differences when possible and applicable. These test methods are also in the tables together with the original data. The abbreviations, used in these tables, are explained in appendix 3.

In the iis PT reports, ASTM test methods are referred to with a number and if appropriate an indication of sub test method (e.g. D1209) and an added designation for the year that the test method was adopted or revised (e.g. D1209:05). If applicable, a designation in parentheses is added to designate the year of reapproval (e.g. D1209:05(2019)). In the test result tables of appendix 1 only the test method number (sub) and year of adoption or revision (e.g. D1209:05) will be used.

Unfortunately, a suitable reference test method providing the precision data is not available for all determinations. For these the calculated reproducibility was compared against the estimated reproducibility calculated from the Horwitz equation.

Sample #21001

Acidity without Nitrogen purge: This determination was problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is not in agreement with the requirements of ASTM D2086:08(2012). Test method is withdrawn with no replacement in 2021.

<u>Apparent Specific Gravity 20/20°C:</u> This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in good agreement with the requirements of ISO12185:96.

<u>Color Pt/Co:</u> This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in good agreement with the requirements of ASTM D1209:05(2019).

<u>Density at 20°C:</u> This determination was not problematic. Two statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of ISO12185:96.

<u>Distillation:</u> This determination was not problematic for all distillation parameters; IBP, 50% recovered, Dry Point and Distillation Range. No statistical outliers were observed. The calculated reproducibilities are in good agreement with the requirements of ASTM D1078:11(2019) (automated and manual mode).

Inhibitor as Hydroquinone: This determination was not problematic. Two statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of ASTM D2193:06(2012). Test method is withdrawn with no replacement in 2021.

<u>Purity by GC:</u> Regretfully, no reference test method with precision data exists for this

determination. Therefore, no z-scores were calculated. No statistical outliers were observed. The calculated reproducibility (0.0232) was in line

with the previous PT (0.0247 in iis20C01).

Acetaldehyde: This determination was not problematic. Three statistical outliers were

observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the estimated reproducibility calculated with

the Horwitz equation.

Acetone: This determination was not problematic. Most participants agreed on a test

result less than 10 mg/kg. Therefore, no z-scores were calculated.

<u>Ethyl Acetate:</u> This determination may be problematic. Two statistical outliers were

observed. The calculated reproducibility after rejection of the statistical outliers is not in agreement with the estimated reproducibility calculated

with the Horwitz equation.

Methyl Acetate: This determination may be problematic. One statistical outlier was

observed. The calculated reproducibility after rejection of the statistical outlier is not in agreement with the estimated reproducibility calculated with

the Horwitz equation.

<u>Water:</u> This determination was not problematic. No statistical outliers were

observed. The calculated reproducibility is in good agreement with the

requirements of ASTM D1364:02(2012).

4.2 Performance evaluation for the group of Laboratories

A comparison has been made between the reproducibility as declared by the reference test method or as declared by the estimated target reproducibility calculated with the Horwitz equation and the reproducibility as found for the group of participating laboratories. The number of significant test results, the average, the calculated reproducibility (2.8 * standard deviation) and the target reproducibility derived from literature reference test methods (in casu ASTM, EN and ISO test methods) or estimated using the Horwitz equation are presented in the next table.

Parameter	unit	n	average	2.8 * sd	R(lit)
Acidity without N ₂ purge	mg/kg	13	28.1	11.5	6
Apparent Specific Gravity 20/20°C		19	0.9339	0.0002	0.0005
Color Pt/Co		15	3.2	3.6	7
Density at 20°C	kg/L	17	0.9322	0.0001	0.0005
Initial Boiling Point	°C	16	72.4	0.3	1.1
50% recovery	°C	16	72.7	0.3	0.5
Dry Point	°C	16	72.8	0.3	0.8
Range	°C	16	0.4	0.3	0.7

Parameter	unit	n	average	2.8 * sd	R(lit)
Inhibitor as Hydroquinone	mg/kg	18	2.6	0.5	1.0
Purity by GC	%M/M	18	99.972	0.023	n.a.
Acetaldehyde	mg/kg	12	21.7	5.7	6.1
Acetone	mg/kg	11	<10	n.e.	n.e.
Ethyl Acetate	mg/kg	12	163	56	34
Methyl Acetate	mg/kg	9	10.4	5.4	3.3
Water	mg/kg	17	105	42	61

Table 3: reproducibilities of tests on sample #21001

Without further statistical calculations, it can be concluded that for many tests there is a good compliance of the group of participants with the reference test methods. The problematic tests have been discussed in paragraph 4.1.

4.3 EVALUATION OF THE PROFICIENCY TEST OF FEBRUARY 2021 WITH PREVIOUS PTS

	February 2021	February 2020	February 2019	February 2018	February 2017
Number of reporting laboratories	22	20	27	25	23
Number of test results	225	214	247	282	266
Number of statistical outliers	11	10	11	10	8
Percentage statistical outliers	4.9%	4.7%	4.5%	3.5%	3.0%

Table 4: comparison with previous proficiency tests

In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

The performance of the determinations of the proficiency test was compared to the requirements of the reference test methods. The conclusions are given in the following table.

Parameter	February 2021	February 2020	February 2019	February 2018	February 2017
Acidity without N ₂ purge			()	-	
Apparent Specific Gravity 20/20°C	++	++	+	++	++
Color Pt/Co	++	++	+	++	++
Density at 20°C	++	++	+	++	++
Distillation	++	++	+/-	++	++
Inhibitor as Hydroquinone	+		()	-	+/-
Purity by GC	+	++		++	
Acetaldehyde	+	-	-		-
Acetone	n.e.	n.e.	n.e.	n.e.	-
Ethyl Acetate	-	-	-	++	+
Methyl Acetate	-	-	-	+	-
Water	+	+	+	+	++

Table 5: comparison determinations against the reference test methods

Results between brackets should be used with due care

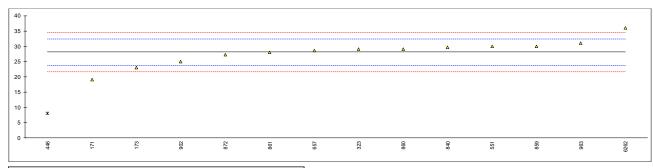
In the table above the following performance categories were used:

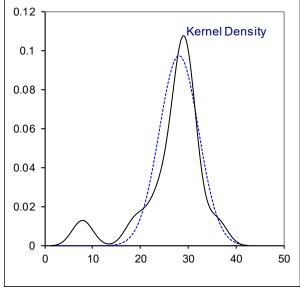
++ : group performed much better than the reference test method

+ : group performed better than the reference test method

+/- : group performance equals the reference test method

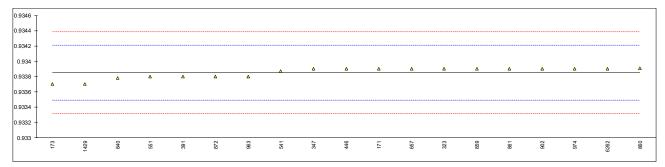
- : group performed worse than the reference test method

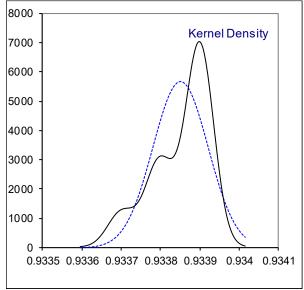

-- : group performed much worse than the reference test method


n.e. : not evaluated

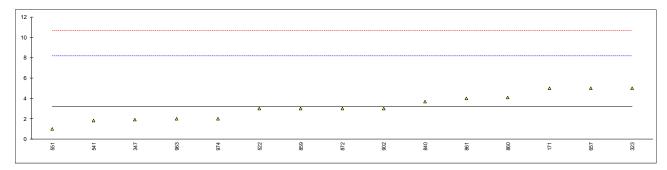
APPENDIX 1

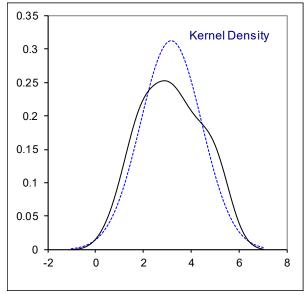
Determination of Acidity without N₂ purge on sample #21001; results in mg/kg


lab	method	value	mark	z(targ)	Remarks
171	D2086	19		-4.25	
173	INH-44	23		-2.39	
273					
323	D2086	29		0.41	
347					
391					
446	D2086	8	G(0.01)	-9.39	
522					
541					
551	D2086	30		0.88	
657	D2086	28.6		0.23	
840	D2086	29.7		0.74	
859	D2086	30		0.88	
860	D2086	29		0.41	
861	D2086	28		-0.05	
872	D2086	27.2		-0.43	
902	D2086	25	С	-1.45	first reported 17
913					
963	D2086	31		1.35	
974					
1429					
6262	D2086	36		3.68	
	normality	suspect			
	n	13			
	outliers	1			
	mean (n)	28.12			
	st.dev. (n)	4.100			
	R(calc.)	11.48			
	st.dev.(D2086:08)	2.143			
	R(D2086:08)	6			

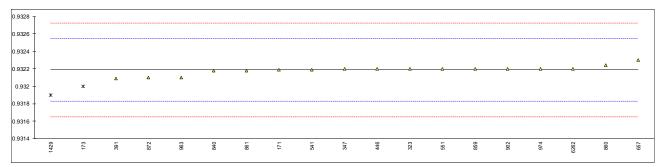


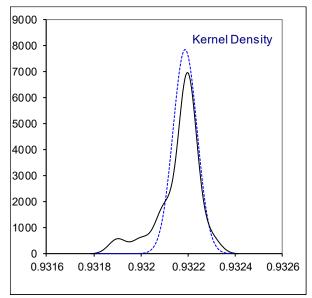
Determination of Apparent Specific Gravity 20/20°C on sample #21001;


lab	method	value	mark	z(targ)	remarks
171	D4052	0.9339		0.28	
173	D4052	0.9337		-0.84	
273					
323	D4052	0.9339		0.28	
347	D4052	0.9339		0.28	
391	ISO12185	0.9338		-0.28	
446	D4052	0.9339	С	0.28	first reported 0.933
522					
541	D4052	0.93387		0.11	
551	D4052	0.9338		-0.28	
657	D4052	0.93390		0.28	
840	D4052	0.93378		-0.39	
859	D4052	0.9339		0.28	
860	D4052	0.93391		0.33	
861	D4052	0.9339		0.28	
872	D4052	0.9338		-0.28	
902	D4052	0.9339		0.28	
913	1001010-				
963	ISO12185	0.9338		-0.28	
974	D4052	0.9339		0.28	
1429	D 4050	0.9337		-0.84	
6262	D4052	0.9339		0.28	
	normality	ОК			
	n	19			
	outliers	0			
	mean (n)	0.93385			
	st.dev. (n)	0.000070			
	R(calc.)	0.00020			
	st.dev.(ISO12185:96)	0.000179			
	R(ISO12185:96)	0.0005			

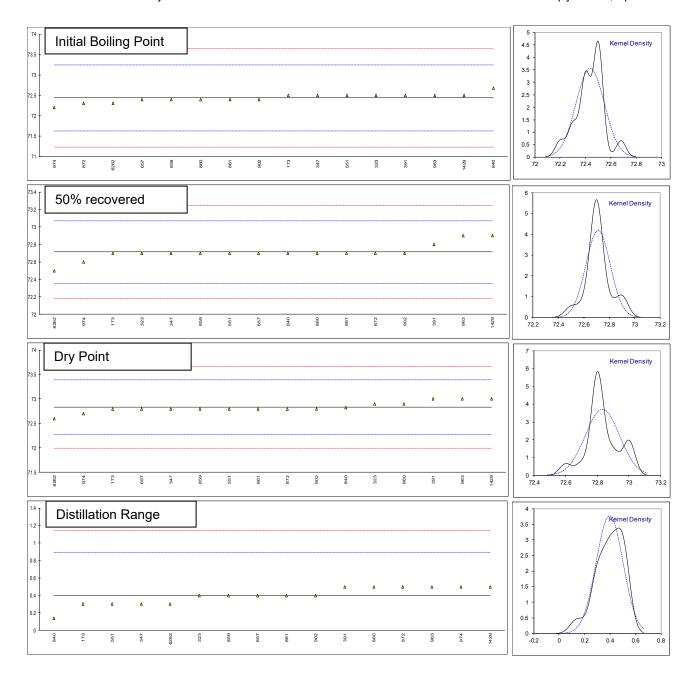


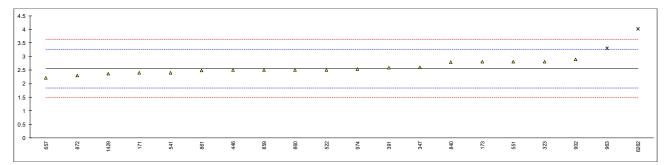
Determination of Color Pt/Co on sample #21001;

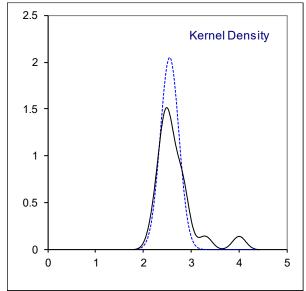

lab	method	value	mark	z(targ)	remarks
171	D1209	5		0.73	
173	D1209	<5			
273					
323	D5386	5		0.73	
347	D5386	1.9		-0.51	
391	D1209	<5			
446	D1209	<5			
522		3.0		-0.07	
541	D5386	1.8		-0.55	
551	D1209	1		-0.87	
657	D1209	5		0.73	
840	D5386	3.7		0.21	
859	D1209	3		-0.07	
860	D5386	4.1		0.37	
861	D5386	4		0.33	
872	D1209	3 3		-0.07	
902	D5386	3		-0.07	
913					
963	D1209	2		-0.47	
974	D5386	2		-0.47	
1429		<5			
6262	D1209	<5			
	normality	OK			
	n	15			
	outliers	0			
	mean (n)	3.17			
	st.dev. (n)	1.280			
	R(calc.)	3.58			
	st.dev.(D1209:05)	2.500			
	R(D1209:05)	7			



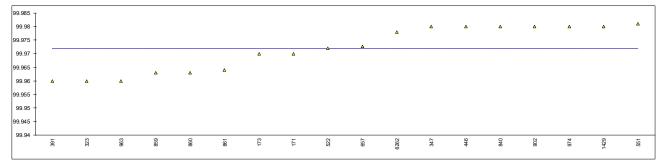
Determination of Density at 20°C on sample #21001; results in kg/L

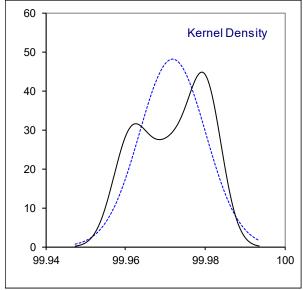

lab	Method	value	mark	z(targ)	remarks
171	D4052	0.93219		0.02	
173	D4052	0.9320	G(0.05)	-1.04	
273					
323	D4052	0.9322		0.08	
347	D4052	0.9322		0.08	
391	ISO12185	0.93209		-0.54	
446	D4052	0.9322	С	0.08	first reported 0.9313
522					
541	D4052	0.93219		0.02	
551	D4052	0.9322		0.08	
657	D4052	0.9323		0.64	
840	D4052	0.93218		-0.04	
859	D4052	0.9322		0.08	
860	D4052	0.93224		0.30	
861	D4052	0.93218		-0.04	
872	D4052	0.9321		-0.48	
902	D4052	0.9322		0.08	
913					
963	ISO12185	0.9321		-0.48	
974	D4052	0.9322		0.08	
1429		0.9319	G(0.05)	-1.60	
6262	D4052	0.9322		0.08	
	Normality	suspect			
	N	17			
	Outliers	2			
	mean (n)	0.93219			
	st.dev. (n)	0.000051			
	R(calc.)	0.00014			
	st.dev.(ISO12185:96)	0.000179			
	R(ISO12185:96)	0.0005			
	1 (1 = 0 1 = 100.00)				


Determination of Distillation on sample #21001; results in °C

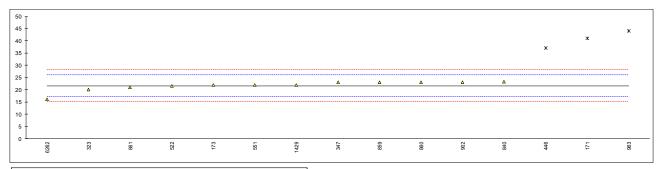

lab	method	IBP	mark z(targ	50%rec	mark z(targ)	DP	mark	z(targ)	range	mark	z(targ)
171											
173	D1078-A	72.5	0.16	72.7	-0.07	72.8		-0.12	0.3		-0.39
273											
323	D1078-A	72.5	0.16	72.7	-0.07	72.9		0.24	0.4		0.02
347	D1078-A	72.5	0.16	72.7	-0.07	72.8		-0.12	0.3		-0.39
391	D1078-A	72.5	0.16	72.8	0.49	73.0		0.60	0.5		0.42
446											
522											
541											
551	D1078	72.5	0.16	72.7	-0.07	72.8		-0.12	0.3		-0.39
657	D1078-M	72.4	-0.09	72.7	-0.07	72.8		-0.12	0.4		0.02
840	D1078-A	72.68	0.60	72.70	-0.07	72.82		-0.04	0.14		-1.03
859	D1078-M	72.4	-0.09	72.7	-0.07	72.8		-0.12	0.4		0.02
860	D1078-M	72.4	-0.09	72.7	-0.07	72.9		0.24	0.5		0.42
861	D1078-M	72.4	-0.09	72.7	-0.07	72.8		-0.12	0.4		0.02
872	D1078-M	72.3	-0.34	72.7	-0.07	72.8		-0.12	0.5		0.42
902	D1078-A	72.4	-0.09	72.7	-0.07	72.8		-0.12	0.4		0.02
913											
963	D1078-A	72.5	0.16	72.9	1.06	73.0		0.60	0.5		0.42
974	D1078-A	72.2	-0.59	72.6	-0.63	72.7		-0.48	0.5		0.42
1429		72.5	0.16	72.9	1.06	73.0		0.60	0.5		0.42
6262	D1078-A	72.3	-0.34	72.5	-1.20	72.6		-0.84	0.3		-0.39
normal	ity	suspec	t	suspect	Ì	OK			ОК		
n		16		16		16			16		
outliers	3	0		0		0			0		
mean (n)	72.44		72.71		72.83			0.40		
st.dev.	(n)	0.117		0.096		0.108			0.106		
R(calc.)	0.31		0.27		0.30			0.30		
	(D1078-A:11)	0.404		0.177		0.278			0.249		
R(D10 ³ Compa	78-A:11)	1.13		0.50		0.78			0.70		
	78-M:11)	0.78		0.47		0.95			0.63		

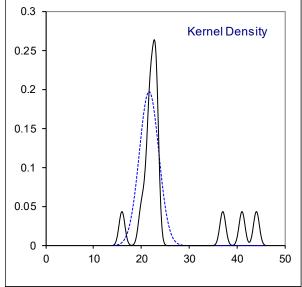
Determination of Inhibitor as Hydroquinone on sample #21001; results in mg/kg


lab	method	value	mark	z(targ)	remarks
171	D2193	2.4		-0.43	
173	D2193	2.8		0.69	
273					
323	D2193	2.8		0.69	
347	INH-097	2.6	С	0.13	first reported 3.8
391	D2193	2.58		0.07	
446	D2193	2.5		-0.15	
522		2.51		-0.12	
541	D2193	2.40		-0.43	
551	D2193	2.8		0.69	
657	D2193	2.21		-0.96	
840	D2193	2.79		0.66	
859	D2193	2.5		-0.15	
860	D2193	2.5		-0.15	
861	D2193	2.48		-0.21	
872	D2193	2.3		-0.71	
902	D2193	2.9	С	0.97	first reported 2,,9
913					
963	D2193	3.3	G(0.05)	2.09	
974	D2193	2.54		-0.04	
1429		2.36		-0.54	
6262	D2193	4.01	G(0.01)	4.08	
	normality	OK			
	n	18			
	outliers	2			
	mean (n)	2.55			
	st.dev. (n)	0.195			
	R(calc.)	0.54			
	st.dev.(D2193:06)	0.357			
	R(D2193:06)	1.0			
	•				



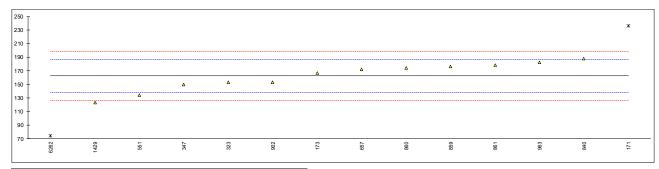
Determination of Purity by GC on sample #21001; results in %M/M

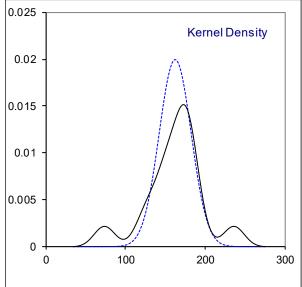

lab	method	value	mark	z(targ)	remarks
171	INH-001	99.97			
173	INH-257	99.97			
273					
323	INH-067	99.96			
347	INH-096	99.98			
391	INH-257	99.96			
446	INH-582	99.98			
522	DOWN102582	99.972			
541					
551	INH-1355	99.981			
657	INH-047	99.9727			
840	D3545	99.980			
859	INH-1628.2	99.963			
860	INH-1628.2	99.963			
861	INH-1628.2	99.964			
872					
902	INH-22	99.98			
913	15111 0404				
963	INH-8124	99.96			
974	INH-582	99.98			
1429		99.98			
6262		99.9779			
	normality	OK			
	n	18			
	outliers	0			
	mean (n)	99.9719			
	st.dev. (n)	0.00828			
	R(calc.)	0.0232			
	st.dev.(lit)	n.a.			
	R(lit)	n.a.			
Compa					
	R(iis20C01)	0.0247			
	(/				



Determination of Acetaldehyde on sample #21001; results in mg/kg

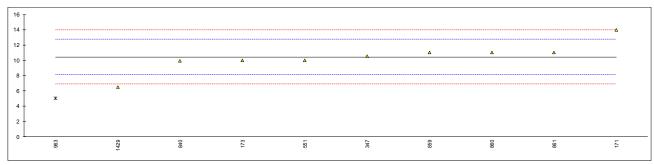
lab	method	value	mark	z(targ)	remarks
171	INH-001	41	DG(0.05)	8.87	
173	INH-47	22	. ,	0.16	
273					
323	INH-067	20		-0.76	
347	INH-096	23		0.62	
391					
446	INH-582	37	G(0.01)	7.04	
522	DOWN102582	21.64		-0.01	
541	INIL 1255	22		0.46	
551 657	INH-1355			0.16	
840	D3545	23.2		0.71	
859	INH-1628.2	23.2		0.62	
860	INH-1628.2	23		0.62	
861	INH-1628.2	21		-0.30	
872					
902	INH-22	23		0.62	
913					
963	INH-8124	44	DG(0.05)	10.25	
974					
1429		22		0.16	
6262		16		- 2.59	
	normality	not OK			
	n	12			
	outliers	3			
	mean (n)	21.65			
	st.dev. (n)	2.025			
	R(calc.)	5.67			
	st.dev.(Horwitz)	2.181			
	R(Horwitz)	6.11			

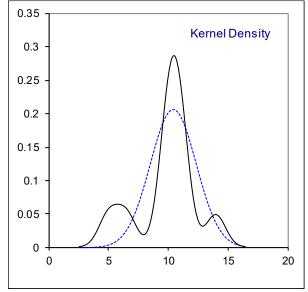



Determination of Acetone on sample #21001; results in mg/kg

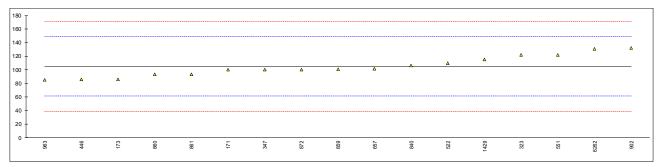
lab	method	value	mark	z(targ)	remarks
171	INH-001	<10			
173					
273					
323		<10			
347					
391					
446					
522					
541					
551	INH-1355	<10			
657	INH-047	< 10			
840	D3545	<10			
859	INH-1628.2	<10			
860	INH-1628.2	<10			
861	INH-1628.2	<10			
872					
902	INH-22	<10			
913					
963					
974					
1429		<1			
6262		<10			
	n	11			
	n maan (n)				
	mean (n)	<10			

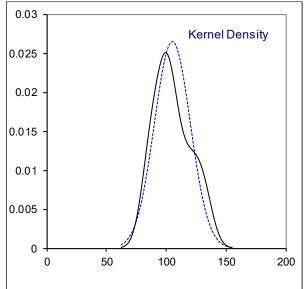
Determination of Ethyl Acetate on sample #21001; results in mg/kg


lab	mathad	value	mark	=/tora\	remarks
	method			z(targ)	Tellidiks
171	INH-001	236	DG(0.05)	6.08	
173	INH-47	167		0.37	
273	INII 1 007	450		0.70	
323	INH-067	153		-0.79	
347	INH-096	150		-1.04	
391					
446					
522					
541					
551	INH-1355	134		-2.36	
657	INH-047	172.4		0.82	
840	D3545	187.9		2.10	
859	INH-1628.2	176		1.11	
860	INH-1628.2	174		0.95	
861	INH-1628.2	178		1.28	
872					
902	INH-22	153		-0.79	
913					
963	INH-8124	182		1.61	
974					
1429		123		-3.27	
6262		74	DG(0.05)	-7.32	
	normality	OK			
	n	12			
	outliers	2			
	mean (n)	162.53			
	st.dev. (n)	20.017			
	R(calc.)	56.06			
	st.dev.(Horwitz)	12.085			
	R(Horwitz)	33.84			
	,,				



Determination of Methyl Acetate on sample #21001; results in mg/kg


lab	method	value	mark	z(targ)	remarks
171	INH-001	14		3.04	
173	INH-47	10		-0.37	
273					
323	INH-067	<10			
347	INH-096	10.5	С	0.06	first reported 13
391					
446					
522					
541					
551	INH-1355	10		-0.37	
657	INH-047	< 10			
840	D3545	9.9		-0.45	
859	INH-1628.2	11		0.48	
860	INH-1628.2	11		0.48	
861	INH-1628.2	11		0.48	
872					
902	INH-22	<10			
913					
963	INH-8124	5	D(0.05)	-4.63	
974					
1429		6.5		-3.35	
6262		<10			
	normality	not OK			
	n	9			
	outliers	1			
	mean (n)	10.43			
	st.dev. (n)	1.931			
	R(calc.)	5.41			
	st.dev.(Horwitz)	1.173			
	R(Horwitz)	3.28			



Determination of Water on sample #21001; results in mg/kg

lab	method	value	mark	z(targ)	remarks
171	D1364	100		-0.22	
173	E203	86		-0.86	
273					
323	D1364	122		0.78	
347	D1364	100		-0.22	
391					
446	D1364	86		-0.86	
522	E203	109.7		0.22	
541					
551	E1364	122		0.78	
657	E1064	101.6		-0.15	
840	D1364	106		0.05	
859	D1364	101		-0.18	
860	D1364	93		-0.54	
861	D1364	93		-0.54	
872	D1364	100		-0.22	
902	D1364	132		1.23	
913					
963	D1364	85		-0.91	
974					
1429		115		0.46	
6262	D1364	131		1.19	
	normality	OK			
	n	17			
	outliers	0			
	mean (n)	104.90			
	st.dev. (n)	15.038			
	R(calc.)	42.11			
	st.dev.(D1364:02)	21.947			
	R(D1364:02)	61.45			
	,				

APPENDIX 2

Number of participants per country

- 1 lab in ARGENTINA
- 2 labs in BELGIUM
- 1 lab in BRAZIL
- 3 labs in CHINA, People's Republic
- 1 lab in INDIA
- 1 lab in ITALY
- 1 lab in MEXICO
- 1 lab in RUSSIAN FEDERATION
- 1 lab in SAUDI ARABIA
- 1 lab in SINGAPORE
- 1 lab in SOUTH AFRICA
- 1 lab in SPAIN
- 1 lab in TURKEY
- 1 lab in UNITED ARAB EMIRATES
- 2 labs in UNITED KINGDOM
- 2 labs in UNITED STATES OF AMERICA
- 1 lab in VIETNAM

APPENDIX 3

Abbreviations

C = final test result after checking of first reported suspect test result

D(0.01) = outlier in Dixon's outlier test D(0.05) = straggler in Dixon's outlier test D(0.01) = outlier in Grubbs' outlier test D(0.05) = straggler in Grubbs' outlier test D(0.05) = outlier in Double Grubbs' outlier test D(0.05) = straggler in Double Grubbs' outlier test

R(0.01) = outlier in Rosner's outlier test R(0.05) = straggler in Rosner's outlier test

E = calculation difference between reported test result and result calculated by iis

W = test result withdrawn on request of participant ex = test result excluded from statistical evaluation

n.a. = not applicable
n.e. = not evaluated
n.d. = not detected
fr. = first reported
SDS = Safety Data Sheet

Literature

- 1 iis Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, June 2018
- 2 Horwitz, R. Albert, J. AOAC Int, <u>79</u>, 3, 589, (1996)
- 3 ASTM E178:08
- 4 ASTM E1301:03
- 5 ISO5725:86
- 6 ISO5725, parts 1-6:94
- 7 ISO13528:05
- 8 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 9 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 10 IP367:84
- 11 DIN38402 T41/42
- 12 P.L. Davies, Fr. Z. Anal. Chem, <u>331</u>, 513, (1988)
- 13 J.N. Miller, Analyst, <u>118</u>, 455, (1993)
- 14 Analytical Methods Committee, Technical brief No 4, January 2001
- 15 P.J. Lowthian and M.Thompson, The Royal Society of Chemistry, Analyst, <u>127</u>, 1359-1364, (2002)
- Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, Technometrics, 25(2),165-172, (1983)